Regulatory Volume Decrease of Cardiac Myocytes Induced by β-Adrenergic Activation of the Cl− Channel in Guinea Pig

نویسندگان

  • Zhuren Wang
  • Tamotsu Mitsuiye
  • Siân A. Rees
  • Akinori Noma
چکیده

A new method was developed to automatically measure the thickness of a single ventricular myocyte of guinea-pig heart. A fine marker was attached on the cell's upper surface and changes in its vertical position were measured by focusing it under the microscope. When the osmolarity of the bath solution was varied, the cell thickness reached a new steady level without any obvious regulatory volume change within the period of observation up to 15 min. The cell thickness was 7.8 +/- 0.2 microns (n = 94) in the control Tyrode solution and was varied to 130.4 +/- 3.1% (n = 10), 119.1 +/- 1.1% (n = 50), 87.2 +/- 1.9% (n = 9), and 75.6 +/- 3.2% (n = 5) of control at 50, 70, 130, and 200% osmolarity, respectively. The application of a Cl- channel blocker, 500 microM anthracene-9-carboxylic acid (9AC) did not modify these osmotic volume changes. We discovered that the application of isoprenaline induced a regulatory volume decrease (RVD) in cells inflated by hypotonic solutions. This isoprenaline-induced RVD was inhibited by antagonizing beta-adrenergic stimulation with acetylcholine. The isoprenaline-induced RVD was mimicked by the external application of 8-bromoadenosine 3':5'-cyclic monophosphate. The RVD was inhibited by blocking the cAMP-dependent Cl- channel (ICl, rAMP) with 9AC but was insensitive to 4,4'-diisothiocyanostilbene-2,2'-dissulphonate (DIDS). Taken together these data suggest an involvement of ICl, cAMP activation in the RVD. Whole cell voltage clamp experiments revealed activation of ICl, cAMP by isoprenaline under the comparable conditions. The cardiac cell volume may be regulated by the autonomic nervous activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PKC regulation of cardiac CFTR Cl- channel function in guinea pig ventricular myocytes.

The role of protein kinase C (PKC) in regulating the protein kinase A (PKA)-activated Cl- current conducted by the cardiac isoform of the cystic fibrosis transmembrane conductance regulator (cCFTR) was studied in guinea pig ventricular myocytes using the whole cell patch-clamp technique. Although stimulation of endogenous PKC with phorbol 12,13-dibutyrate (PDBu) alone did not activate this Cl- ...

متن کامل

Presence of prejunctional D2-dopaminoceptors and α2-adrenoceptors on the cholinergic nerve of the common bile duct of guinea pig

On most adrenergic and cholinergic nerve terminals, prejunctional α-adrenoceptors belonging to the α2-subtype have been identified. Activation of these receptors will decrease the release of norepinephrine. It has been reported that several isolated tissue preparations contain prejunctional dopamine receptors, the stimulation of which inhibits neurotransmission. It has remained uncertain whethe...

متن کامل

Beta-adrenergic stimulation does not activate Na+/Ca2+ exchange current in guinea pig, mouse, and rat ventricular myocytes.

The effect of beta-adrenergic stimulation on cardiac Na(+)/Ca(2+) exchange has been controversial. To clarify the effect, we measured Na(+)/Ca(2+) exchange current (I(NCX)) in voltage-clamped guinea pig, mouse, and rat ventricular cells. When I(NCX) was defined as a 5 mM Ni(2+)-sensitive current in guinea pig ventricular myocytes, 1 microM isoproterenol apparently augmented I(NCX) by approximat...

متن کامل

Effect of Sodium Valproate on Ouabain-Induced Arrhythmia in Isolated Guinea-Pig Atria

Sodium valproate (SV), an antiepileptic drug has several mechanism of action. It inhibits voltage sensitive Na+ channels and reduces intracellular Na accumulation. These actions are similar to that of both phenytoin and carbamazepine. We have investigated the direct cardiac action of SV and its effects on ouabain-induced arrhythmia in isolated guinea-pig atria. The guinea-pig atrium was dissect...

متن کامل

Acidic extracellular pH-activated outwardly rectifying chloride current in mammalian cardiac myocytes.

Extracellular acidic pH was found to induce an outwardly rectifying Cl- current (I(Cl,acid)) in mouse ventricular cells, with a half-maximal activation at pH 5.9. The current showed the permeability sequence for anions to be SCN- > Br- > I- > Cl- > F- > aspartate, while it exhibited a time-dependent activation at large positive potentials. Similar currents were also observed in mouse atrial cel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of General Physiology

دوره 110  شماره 

صفحات  -

تاریخ انتشار 1997